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The wavelet-transform method is used to quantify the magnetic medical MRS applications, such as low signal-to-noise ratio,
resonance spectroscopy (MRS) parameters: chemical shift, appar- broad resonances, and ‘‘chemical noise,’’ can then be re-
ent relaxation time T*2 , resonance amplitude, and phase. Wavelet duced, and accurate estimates of MRS parameter values may
transformation is a time-frequency representation which separates be obtained.
each component from the FID, then successively quantifies it and Two iterative procedures obtained from the application of
subtracts it from the raw signal. Two iterative procedures have

WT to noise-free MRS signals composed of one and twobeen developed. They have been combined with a nonlinear regres-
resonances, respectively, are tested on simulated and realsion analysis method and tested on both simulated and real sets
biomedical MRS data. The case of noisy signals is consid-of biomedical MRS data selected with respect to the main problems
ered, and a classical solution is proposed.usually encountered in quantifying biomedical MRS, specifically

‘‘chemical noise,’’ resulting from overlapping resonances, and
baseline distortion. The results indicate that the wavelet-transform CONTINUOUS WAVELET TRANSFORM
method can provide efficient and accurate quantification of MRS
data. q 1997 Academic Press

Let L 2(R) be the vector space of square integrable func-
tions, i.e., signals of finite energy. For u( t) and £( t) belong-
ing to L 2(R) , the scalar product between u and £ is given

INTRODUCTION by

The wavelet-transform method (WT), as proposed by
»u , £ … Å * u( t)£*( t)dt , [1]Grossmann and Morlet (1), analyzes a nonstationary signal

by transforming its input time domain into a time-frequency
domain. Through translation and dilation operations, WT de-

where the asterisk denotes the complex conjugate. For anycomposes the signal according to a set of functions, all de-
function u( t) of L 2(R) , û(v) is the associated Fourier trans-duced from a unique prototype called a wavelet, assumed to
form defined bybe well localized both in time and frequency domains. Such

a time-frequency representation could provide a more efficient
solution than the usual Fourier-transform (FT) or other meth- uP (v) Å *

/`

0`

u( t)e0ivtdt . [2]
ods presently available to process MRS data (2–5).

WT is presented here as a quantification method in bio-
medical MRS with special attention to the FID signal charac- Any function g( t) belonging to L 2(R) is called an analyzing
teristics. The FID signal, considered as a sum of damped wavelet if it complies with the so-called admissibility condi-
sinusoids, is analyzed by WT and decomposed into its differ- tion (6) :
ent components. The components are then successively sepa-
rated with respect to their time durations and resonance fre-
quencies, quantified, and subtracted from the raw signal. Cg Å *

/`

0`

ÉgP (v)É2

ÉvÉ
dv õ ` . [3]

Chemical-shift and phase values are estimated from the WT
phase information, while the WT modulus is used to estimate
the values of the amplitude resonance A and the apparent With respect to this wavelet, the continuous wavelet trans-

form of a signal s( t) of finite energy is given byrelaxation time T*2 . The problems often encountered in bio-
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21WAVELET-TRANSFORM ANALYSIS

s( t) Å ∑
N

jÅ1

Aje
(0 t /T*

2
j
)e i (v j t/w j ) Å ∑

N

jÅ1

sj( t) , [7]Sa(b) Å »s , ga ,b… Å
1
a * s( t)g*S t 0 b

a Ddt [4]

where Aj , T*2j
, vj Å 2pdj , and wj are the resonance amplitude,

with
apparent relaxation time, angular frequency (chemical shift
dj) , and phase, respectively, of the component sj . N denotes
the total number of the signal resonances. We assume here,ga ,b( t) Å 1

a
gS t 0 b

a D , a ú 0, b √ R.
as is generally true, that the damping factor of each compo-
nent, given by 1/pT*2j

, is very small compared with vj .

The transform maps the signal via a two-dimensional func- Case of a Signal with One Component
tion on the time-scale domain plane (a , b) . This operation

According to Eq. [7] , the FID signal may be written asis equivalent to a particular filter-bank analysis in which the
relative frequency band widths are constant and related to

s( t) Å Ae (0 t /T*
2)e i (vst/w ) [8]the parameters a and b (scale parameter and translation pa-

rameter) and to the frequency properties of the wavelet g .
Sa(b) can be written as Our aim is to estimate the values of the MRS parameters.

Due to the causality of the FID signal, our conventions (a ,
b √ R/ 1 R/) for the time-frequency domain display (Fig.

Sa(b) Å * s( t)gI a(b 0 t)dt , [5] 1) are the same as in (9) .
According to Eq. [4] , the WT of s( t) with respect to the

Morlet wavelet is given bywhere g̃a(r) Å (1/a)g*(0 r/a) is the impulse response of
the filter.

Sa(b)There is a large set of functions satisfying the condition
of Eq. [3]: not only can the analyzing wavelet be selected

Å 1
a *

/`

0

Ae (0 t /T*
2)e i (vst/w )e {0 [ ( t0b ) /a ]2/2}e0 iv0[ ( t0b ) /a ] dt [9]according to the signal features but the parameters a and b

can be adjusted without limiting their range values. Transient
events in a specific frequency domain can then be easily

Substituting u for ( t 0 b) /a , Sa(b) becomestargeted. In practice, to achieve satisfactory signal analysis,
regularity and a suitable time-frequency band-width product

Sa(b) Å Ae (0b /T*
2)e i (vsb/w )

are required for g . The most commonly used analyzing
wavelet has been the so-called Morlet wavelet defined by

1 *
`

0b /a

e (0au /T*
2)e i (avs0v0)ue (0u2 /2)du

g( t) Å e0t 2/2e iv0t / c( t) , [6] Å s(b) 1 J . [10]

where c( t) is a correction term to ensure that the admissibil- Taking D as
ity condition is met. For v0 ú 5, the term c( t) is negligible
and g( t) is practically applicable, where ĝ(v) É 0 if v £

D Å avs 0 v0 , [11]0 (7) . In the next section, the concept of the wavelet trans-
form, briefly reviewed here, is considered in MRS signal

one can show that the quantity J , given by *`

0b /a
e (0au /T*

2)analysis and quantification.
e iDu e (0u2 /2) du , is equivalent to

DEVELOPMENT OF A METHOD
FOR MRS SIGNAL PROCESSING J Å e (1 /2) (a /T*

2)2
e [0 iD (a /T*

2) ] *
`

a

e [ (0 t2 /2)/ iDt ] dt

Quantification is a necessary step for clinical implementa- Å e (1 /2) (a /T*
2)2

e [0 iD (a /T*
2) ] I [12]

tion of large-scale MRS. Wavelet transform would appear
to be an alternative method to the traditional FT for MRS

with a Å [(a /T*2 ) 0 (b /a)] . If I is given the value showndata quantification. Referring to (8) , the FID, considered
in Appendix 1, the expression for Sa(b) becomeshere as a noise-free signal, is composed of a sum of damped

complex sinusoids decaying with time and may be written
as Sa(b) Å s(b)e (1 /2) (a /T*

2)2
e [0 iD (a /T*

2) ] [B / iC] . [13]
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22 SERRAI ET AL.

FIG. 1. Conventional representation of the wavelet-transform analysis as signal transforming functions in the time–frequency plane. Scale and
translation are the two wavelet variables. The signal is represented through translation and scale operations from the time domain to a time-scale domain.

The terms B and C are the result of bordering effects of the Let us take the two first terms of the series Uk in Appendix
1. The term B is restricted toprojection of the signal onto the quart plane H along the

axis where b Å 0.
If we represent the result of the WT of Eq. [13] in terms

B Å
√
p

2
e (0D2/2) |

√
p

2

√
1 0 e0a2

[17]of modulus and phase, we obtain

Sa(b) Å ÉSa(b)Ée iFa(b ) . [14]
and C becomes

The modulus contains A and T*2 and is given by

C Å {
√
p

2
e0D2/2 (

√
eD2 0 1) 0 D(1 0 e0a2/2 ) . [18]

ÉSa(b)É Å Ae [ (a2 /2T*2
2 )0 (b /T*

2) ]
√

B 2 / C 2 . [15]

The signs | in Eq. [17] and { in Eq. [18] are conditionedThe phase of Sa(b) , determined by v and w of the signal,
by the signs of a and D respectively.is given by

Consider now Va(b) Å dFa(b) /db as the instantaneous
frequency of Sa(b) . Combining Eqs. [16], [17], and [18],

Fa(b) Å vsb / w 0 D
a

T*2
/ arctg

C

B
. [16] Va(b) may be written as

Because of the presence of terms B and C in both the modu- Va(b) Å dFa(b)
db

Å vs /
d[arctg(C /B)]

db
. [19]

lus and the phase, it is difficult to compute the values of the
MRS parameters.

However, if D Å 0, the term C is null (see Appendix 1), For a given value of the dilation parameter a of the wavelet,
termed a0 , a value of the translation parameter b exists,and the phase Fa(b) in Eq. [16] becomes equal to the phase

of the signal. This condition is fulfilled if vs is known. termed br , such that for any b ú br , the term d[arctg(C /
B)] /db in Eq. [19] is negligible (see Appendix 2). A firstUnfortunately, this is not usually true. One can estimate the

value of vs and approach D Å 0 by the following procedure. estimation of vs is then obtained from
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23WAVELET-TRANSFORM ANALYSIS

The new calculated value of the instantaneous frequency
Va1

(b0) associated with Sa1
(b0) is closer to vs . The iterative

procedure converges after several iterations, when the fol-
lowing condition is fulfilled:

Z aj/1 0 aj

aj
Z õ e, [22]

where aj is the value of the dilation parameter obtained at
the iteration j . e is an arbitrarily small fixed positive number.

Once this first iterative procedure converges, the value of
vs is estimated from Var

(b0) , where ar is the final value of
the dilation parameter a at convergence. D approaches zero,
and this automatically implies that C decreases to zero and
that B is restricted to

√
p /2[1 |

√
1 0 e0a2

] . Consequently,
Sar

(b) becomes

Sar
(b) Å

√
p

2
e (1 /2) (ar /T*

2)2

1 [1 |
√
(1 0 e0a2

) ]Ae (0b /T*
2)e i (vsb/w ) . [23]

The phase w of the FID signal is directly estimated from the
phase of Sar

(b) , and a simple nonlinear regression algorithm
(14–16) applied to the modulus gives the estimated values
of A and T*2 . Sar

(b) is now equal to the signal at every point
t Å b up to a known function F(b) given by

F(b) Å
√
p

2
e (1 /2) (ar /T*

2)2
[1 |

√
(1 0 e0a2

) ] . [24]

FIG. 2. First iterative-procedure flow chart to estimate the frequency-
component values.

Va0
(b0) É vs b0 ú br . [20]

The value of the translation parameter b0 indicates that vs

is estimated at the end of the FID signal, i.e., for the last
points of the corresponding sampled signal.

To have more precision in the estimated value of vs , D
should be closer to zero. In practice, this is obtained itera-
tively as follows (Fig. 2): Va0

(b0) is substituted for vs in
Eq. [11] and D is assumed to equal zero. The new value a1

of the dilation parameter is computed by

FIG. 3. Detection and estimation of the frequency of the longest-timea1 Å
v0

Va0
(b0)

. [21]
component. The wavelet is translated to the end of the signal.
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24 SERRAI ET AL.

Following the same procedure as for one component, we
obtain

Sa(b) Å ÉS1a(b)Ée iF1a(b ) / ÉS2a(b)Ée iF2a(b ) . [27]

This representation of s( t) is considered as a sum of two
wavelet transforms, each one associated with one particular
component of the signal and described as in Eq. [14] by its
modulus and phase. The WT must be adapted to this type
of signal in order to isolate the components from the FID
and to estimate their MRS parameter values.

If we write Eq. [27] according to the WT associated with
the first component s1 , we obtain

Sa(b) Å ÉS1a(b)Ée iF1a(b ) [1 / Za(b)e iQa(b ) ] . [28]

The interference terms resulting from the interactions be-
tween the two components are represented by Za(b) , where

Za(b) Å ÉS2a(b)É
ÉS1a(b)É

[29]

and by Qa(b) , which is equal to

Qa(b) Å F2a(b) 0 F1a(b) . [30]

If we substitute Eqs. [15] and [16] for the moduli and phases
in Eqs. [29] and [30] respectively, we notice that the extent
of interaction between the components depends particularly
on the ratio A2 /A1 and the difference v2 0 v1 .

Suppose now that the first component s1 decays more
slowly than the second component (T*21

ú T*22
) (Fig. 3) . For

a given translation parameter value b of the wavelet, desig-
nated as br , the remaining component in the signal for any
b ú br is the first component. WT of s( t) is reduced to

FIG. 4. Second iterative procedure steps to estimate A and T*
2 values.

Sa(b) Å ÉS1a(b)Ée iF1a(b ) b ú br . [31]
Case of a Signal Composed of More Than One

Component By comparing Eq. [31] and Eq. [28], the quantity
The previous development allows us to generalize the Za (b)e iQa(b ) , describing the component interactions, becomes

procedure to a noise-free signal composed of more than negligible for b ú br . This allows us to use the iterative
one component. Let s( t) be a FID signal composed of two procedure described above to estimate the value of v1 and
resonances, given by to compute ar , i.e., the final value of the dilation parameter

fulfilling Eq. [22]. At the convergence of the iterative proce-s( t) Å A1e
(0 t /T*

2
1
)e i (v1t/w1) / A2e

(0 t /T*
2

2
)e i (v2t/w2)

dure, the frequency of the component having the greatest
Å s1( t) / s2( t) . [25] apparent relaxation time value T*2 is localized at the wavelet

parameter values b ú br and a Å ar . As a result, accordingThe WT of s( t) with respect to the Morlet wavelet is
to Eq. [23] the corresponding WT is given by

Sa(b) Å 1
a *

`

0

e {0 [ ( t0b ) /a ]2/2}e0 iv0[ ( t0b ) /a ]

Sar
(b) Å

√
p

2
e (1 /2) (ar /T*

2
1
)2

[1 |
√
(1 0 e0a2

1 ) ]1 [A1e
(0 t /T*

2
1
)e i (v1t/w1)

/ A2e
(0 t /T*

2
2
)e i (v2t/w2) ]dt . [26] 1 A1e

(0b /T*
2

1
)e i (v1b/w1) b ú br . [32]
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25WAVELET-TRANSFORM ANALYSIS

FIG. 5. Improvement of the SNR by application of a matched filter: (a) raw FID signal; (b) FT of the raw FID signal; (c) FID signal after application
of a matched filter ; (d) FT of the filtered FID.

The sign | is determined by the sign of a1 , given by a1 Å second. The interactions between the components are practi-
cally nonexistent, and their corresponding Za (b)e iQa(b ) quan-[(ar /T*21

) 0 (b /ar ) ] .
Choosing a very large value of the translation parameter tity in Eq. [28] is zero. Sar

(b) of Eq. [32] becomes valid
b , for example, b0 (b0 ú br ) , allows computation of the w1 for every point b , allowing estimation of the values of A1

value from the phase of Eq. [32]. To estimate the values of and T*21
from the modulus and separation of the first compo-

A1 and T*21
, the modulus is stored on M points and fitted to nent from the signal.

its expression in Eq. [32] by a nonlinear-regression algo- (2) As for overlapping resonances, if the difference
rithm. Unfortunately, it is difficult to determine the number between the two frequencies is small the quantity
M , which decreases when the value of br , which is connected Za(b)e iQa(b ) is not zero. This prevents us from treating the
to the unknown value of T*22

, increases. Furthermore, to have first component independently from the second. The values
an accurate estimate, the number M should be as large as of A1 and T*21

are estimated according to the contribution of
possible, which is not generally the case if T*22

is close to the second component. The full WT, Sa(b) , of Eq. [28]
should be computed for a Å ar . As a function of the ar valueT*21

, even if the value of T*22
is known. To solve this problem,

involving D1 Å 0 and C1 Å 0 for the phase F1ar
(b) in Eq.the first component must be separated from the signal. The

[30], Qar
(b) becomesinteractions between the components are to be investigated

from their frequency difference or from their amplitude ratio.
Here we observe the frequency difference, because it is eas-

Qar
(b) Å (v2 0 v1)b / (w2 0 w1) 0 arD2

T*22

ier to obtain. Two situations must be considered.

(1) If the frequencies of the two components are suffi-
ciently far away from each other, the fast decay of ĝ will / ArctgSC2ar

(b)

B2ar
(b) D . [33]

allow us to treat the first component independently of the
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26 SERRAI ET AL.

Application of the nonlinear regression algorithm to the
modulus of Eq. [35] allows us to estimate not only the
values of A1 and T*21

, but also the parameter values of A2 ,
T*22

, and v2 of the contributing second component s2 in
Sar

(b) . Here the estimated value of A2 represents the contri-
bution of the second component in Sar

(b) , and not the total
amplitude resonance of s2 in the signal s( t) . If v2 is far from
v1 , s2 contributes little to Sar

(b) , and its estimated A2 value
is small compared with the total amplitude resonance of s2 .
Inversely, if v2 is close to v1 the estimated value of A2 is
larger.

To separate the first component s1 from the signal, the
terms Zar

(b) and Car
(b) should be negligible in Eq. [35].

Note that the value of Zar
(b) , according to Eq. [29], is

negligible if the value of A2 is small compared with the value
of A1 . The resolution enhancement of the wavelet in the
frequency domain causes the wavelet ĝ to decay faster. Its
frequency band is narrowed and focused around the fre-
quency of the first component. Sar

(b) is smoothed, con-
taining mainly the first component, and the influence of the
second component is reduced. Thus component s1 may be
separated and filtered from the signal s( t) . The more the
frequency resolution of the wavelet is enhanced, the more
the contribution of the second component is attenuated. The
enhancement of the frequency resolution of the wavelet is
limited by the signal duration. The contribution of the wave-
let in the time domain becomes wider.

The procedure in practice is outlined in Fig. 4: The values
of ar and v0 are multiplied by a given positive factor f ( f
ú 1) to enhance the frequency resolution of the wavelet andFIG. 6. (A) Spectra of simulated signals (1–6), each composed of one
keep its central frequency constant (D1 Å 0 c v1 Å f v0 /resonance. (B) The moduli of the WT of the signals.
far ) . The smoothed Sf ar

(b) is computed. The values of A1 ,
T*21

, A2 , T*22
, and v2 are estimated from the modulus of Eq.

[35]. A1 is compared with A2 , and if the condition ÉA2 /A1ÉThe dominant term in Eq. [33] is (v2 0 v1)b . Referring to
õ e is fulfilled, the procedure stops. Otherwise, the factor(17) , and due to the small difference between v1 and v2 ,
f is increased and a new iteration begins by executing thethe values of the other terms may be neglected. Qar

(b) is
same steps as above. At convergence of this procedure, the

approximated by
final estimated value of A2 is small compared with the value
of A1 . The terms Zf ar

(b) and Cf ar
(b) become negligible in

Qar
(b) É (v2 0 v1)b . [34] Eq. [35] and Sf ar

(b) may be approximated by

Substituting Qar
(b) in Eq. [28], Sar

(b) is approximated by Sf ar
(b)

Sar
(b) É ÉS1ar

(b)É É Z
√
p

2
A1e

{[a2
r /2(T*

2
1
)2]0b /T*

2
1
} [1 | (1 0 e0a2

1 ) 1/2 ]Z
1

√
1 / Z 2

ar
(b) / 2Zar

(b)cos[(v1 0 v2)b]

1 e i (v1b/w1) . [36]1 e i[F1a
r
(b )/Ca

r
(b ) ] , [35]

The WT described by Eq. [36] is equal to the first component
with Car

(b) Å Arctg[Rar
(b) /Tar

(b)] , where Rar
(b) Å s1 of the signal at every point t Å b up to a known function

Zar
(b)sin[(v2 0 v1)b] and Tar

(b) Å 1 / Zar
(b)cos F1(b) similar to Eq. [24]. The separated component is sub-

tracted from the signal with respect to F1(b) , and the second[(v2 0 v1)b] .
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27WAVELET-TRANSFORM ANALYSIS

TABLE 1
Estimated Values of the MRS Parameters Obtained by WT of Simulated FIDs with One Component

Signal 1 2 3 4 5 6

d (normalized) 0.100 0.120 0.140 0.160 0.180 0.200
0.100 0.120 0.139 0.159 0.179 0.200

T*2 (ms) 100 80 60 40 20 10
100.31 80.79 60.78 40.18 19.93 9.37

A (a.u.) 120 100 80 60 40 20
118.21 98.76 79.02 59.33 39.89 21.00

w (rad) 0.17 0.15 0.13 0.11 0.09 0.07
0.19 0.14 0.12 0.10 0.08 0.05

ar 8.75 7.29 6.25 5.47 4.86 4.37
b0 500 450 400 350 250 100
j 9 10 9 12 14 16

Note. The reference values are in bold-face type. Figure 6A displays the spectra of the signals. ar indicates the value of the dilation parameter of the wavelet
at the convergence of the first iterative procedure. b0 is the point estimation of the signal frequency. The required number of iterations is noted by j.

component of the signal is quantified using only the iterative the receiver during data acquisition. The FID decays with
time, while the noise amplitude remains constant. In someprocedure in Fig. 2.

This development may be extended on a FID signal con- cases, the amplitude of noise is important and may compli-
cate detection of the resonances.taining more than two components. The proposed solutions

are included in a third iterative procedure. The number of An efficient method for increasing the SNR consists in
multiplying the data by a decreasing exponential function,iterations of this third procedure will be equal to the number

of signal components. At each iteration, the frequency of written as
the longest-time component among the remaining compo-
nents in the signal is detected. The effects of the component f ( t) Å e (0 t /T ) , [37]
interactions are reduced, and the isolated component is quan-
tified and extracted from the raw signal. where T ú 0 is the constant time of the window function

f ( t) . The desired reduction in the size of the tail of the
Case of a Noisy Signal

signal occurs, and sensitivity is enhanced by using this filter.
Multiplication in this fashion speeds up the apparent decayThe random noise encountered in the FID signal originates

largely from thermal noise in the probe and early stages of of the signal, given by

TABLE 2
Values of the MRS Parameters Estimated by WT on a Simulated Data Set Containing Two Overlapping Resonances

Signal A B C

Peak number 1 2 1 2 1 2

d (normalized) 0.172 0.160 0.160 0.175 0.200 0.250
0.170 0.158 0.158 0.176 0.199 0.249

T*2 (ms) 75 70 50 10 7 5
77.11 71.84 49.01 11.12 7.54 4.75

A (a.u.) 50 55 125 150 80 70
46.32 52.66 130.81 134.93 84.58 67.18

w (rad) 0.20 0.10 0.15 0.25 0.40 0.30
0.18 0.11 0.17 0.22 0.42 0.28

ar 32.03 10.89 15.99 10.08 8.84 7.84
b0 300 250 150 75 35 20
j 29 7 13 7 10 9

Note. The reference values are in bold-face type. The spectra of the signals A, B and C are shown in Figs. 7A, 7C, and 7D respectively. j is the
number of iterations of the first and second iterative procedures. For the signal C, only the first iterative procedure was used.
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28 SERRAI ET AL.

FIG. 7. (A). ( i) Spectrum of the simulated signal (A) composed of two resonances (1 / 2). ( ii ) Spectrum of the residue signal after subtraction
of the first component (1) . ( iii ) Spectrum of the final residue after subtraction of the second component (2) . (B). ( i ) Shape of the modulus of the WT
associated to the first separated component (1) of the signal (A) after the first iterative procedure convergence. ( ii ) Shape of the same modulus after
the second iterative procedure convergence. The effect of the second component (2) is reduced in Sf ar

(b) . (C). ( i ) Spectrum of the signal (B). ( ii )

WT spectrum of the separated first component (1) . ( iii ) WT spectrum of the second component (2) . (D). ( i) Spectrum of the simulated signal (C).
( ii ) WT spectrum of the first component (1) . ( iii ) WT spectrum associated to the remaining component in the signal.

cording to Eq. [7] and were quantified by WT. The sampling1
T a

2

Å 1

T*2
/ 1

T
. [38] frequency was normalized to 1. Each simulated signal was

stored on 1024 points. To have an accurate estimate of A and
T*2 values, the order of the series Uk of the terms B2 and C2The estimation of the frequency components at the end of
contained in ÉS2ar

(b)É was chosen to be 10. The start valuethe signal is still possible by using the first iterative proce-
of the analyzing frequency v0 of the wavelet was chosen asdure (see Fig. 5) , and according to the frequency difference
greater than 5 and was set to 11. The initial values of thebetween the components, the second iterative procedure is
dilation parameter a0 and the factor f were taken as 1 and 2,used to estimate A and T*2 values. To recover the values of
respectively. The precision order of the two iterative proceduresthe apparent relaxation time, the following relation is used:
was ensured by the value of e set to 0.001. The estimated and
reference MRS parameter values, the chosen value of b0 , the1

T*2
Å 1

T a
2

0 1
T

. [39] value of ar obtained after convergence of the iterative proce-
dures, and the requested number of iterations, noted j , for each
signal component are reported in Tables 1, 2, and 3.

APPLICATION TO SIMULATED MRS DATA
Case of a Signal with a Single Component

To test the accuracy and the efficiency of the proposed quan- The aim of this first simple test was to investigate the
behavior of the WT quantification method and to check thetification technique, FIDs were simulated by PC software ac-
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iterative procedure was applied. The translation parameter
point b0 was set to 300. We assumed that for b § 300, the
remaining resonance in the signal is the longest one (say,
the first one). At the convergence of the procedure, the linear
parameter values v1(d1) and w1 of the first component were
estimated. The second iterative procedure was used to esti-
mate the parameter values of A1 and T*21

of the localized first
component and to separate that component from the signal.
The iteration stopped when the estimated value of A2 reached
0.08, which satisfies the condition ÉA2 /A1Éõ e. The number
of iterations of this second procedure depends on the extent
of the component interactions. For this example, the proce-
dure stopped at the 20th frequency wavelet enhancement ( f
Å 20). Note that at each iteration, the estimated values of
A1 , T*21

, and T*22
varied little, whereas the estimated value of

A2 decreased. This demonstrates that the contribution of the
second component was reduced when the frequency resolu-
tion of the wavelet was enhanced. The change in shape of
the modulus of the first component, shown in Fig. 7B, after
the application of the second procedure is another confirma-
tion of this assumption. The first separated component was
filtered from the signal, and the parameter values of the
second component were estimated using only the first itera-
tive procedure.

In signal B (Fig. 7C), the aim was to extract a narrow
peak from a broad baseline containing a large peak (a short
T*2 value). The same steps as used previously were repeated.
The translation parameter point b0 was chosen equal to 150.
The longest-time component was first quantified and sub-
tracted from the raw signal by applying the first and secondFIG. 8. (A) Spectra of the simulated noisy FIDs (1–4) composed of

two resonances with sn Å 0, 200, 300, and 400 respectively. (B) Spectra procedures, respectively. The second procedure took more
of the signals after noise reduction, using the low-pass filter on the signals time to converge ( f Å 6) because of the small difference in
(2, 3, and 4), with different time constant values T equal to 145, 80, and

frequency between the components and the large value of the50 ms, respectively.
amplitude resonance A2 . After subtraction of the first compo-
nent from the signal, the second component was quantified
by applying only the first iterative procedure (Fig. 7C).

number of requested iterations. Six simulated signals, each In the last example (Fig. 7D), the resonances were large
containing one component, were quantified (Fig. 6A). For and had amplitudes and T*2 values close to each other. This
each signal, the translation parameter point b0 was chosen test illustrates the capacity of the WT method to separate
and the first iterative procedure was applied. This procedure two large resonances as in the 1H MRS signal of the alkyl
converged and stopped at the final value ar , fulfilling Eq. region of the plasma lipoprotein. For this example, the fre-
[22]. The frequency of the signal and its phase were esti- quency difference between the two components was large
mated, and the nonlinear analysis algorithm was used to fit enough so that the first iterative procedure alone gave satis-
the modulus to its expression and to give the values of A and factory quantification of the two resonances.
T*2 (Fig. 6B). The results obtained are reported in Table 1.

Case of a Noisy Signal
Case of Two Overlapping Resonances

The low-pass filter was introduced in this test to obtain a
satisfactory SNR in order that the quantification proceduresThis situation is often encountered in biomedical MRS,

for instance, in the in vitro high-resolution 1H MRS of body would remain valid. A noise-free signal, containing two
components and three similar signals with additive complexfluids or in in vivo 31P MRS of brain tissue. Three simulated

signals (A, B, and C) each composed of two overlapping noise, with noise variance sn equal to 200, 300, and 400
respectively, was simulated (Fig. 8A). The injected noiseresonances, were quantified. The results obtained are re-

ported in Table 2. For the first signal (Fig. 7A), the first in the signals is white and uniform. The low-pass filter was
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TABLE 3
Case of Noisy Signals Containing Two Components

Signal sn Å 0 (1) sn Å 200 (2) sn Å 300 (3) sn Å 400 (4)

T (ms) — 145 80 50

Peak 1 2 1 2 1 2 1 2

d (normalized) 0.160 0.185 0.160 0.185 0.160 0.185 0.160 0.185
0.158 0.185 0.156 0.184 0.159 0.186 0.158 0.186

#T*2 (ms) 80 70 80 70 80 70 80 70
81.50 69.25 82.17 72.47 81.20 76.13 73.60 61.42

A (a.u.) 150 120 150 120 150 120 150 120
147.72 118.15 154.64 124.85 143.82 115.56 127.13 106.24

w (rad) 0.21 0.14 0.21 0.14 0.21 0.14 0.21 0.14
0.23 0.12 0.20 0.13 0.22 0.11 0.23 0.11

LT*2 (ms) — — 52.45 48.32 40.30 39.01 29.77 26.06
ar 15.98 9.47 19.90 14.03 17.73 20.04 16.98 16.02
b0 300 250 150 100 135 120 50 30
j 14 8 25 12 21 18 17 14

Note. The WT estimated values are compared with the reference values in bold-face type. The spectra of the processed signals 1, 2, 3, and 4 are
shown in Fig. 8B. They were obtained by application of the low-pass filter with different values of constant time T on the signals. The sign L denotes
the T*2 values obtained by the regression analysis algorithm applied to the modulus. The sign # denotes the recovered T*2 values obtained after using Eq.
[39]. j indicates the number of iterations including the second and/or the first iterative procedures.

first applied on each signal to enhance the SNR with filter data with two resonances and varying noise levels (Table
3, Fig. 8) . The correlation coefficients are 0.985, 0.999, andtime constant T equal to 145, 80, and 50 ms, respectively

(Fig. 8B). Due to the large difference between the frequen- 0.989 for A , d, and T*2 , respectively. The noise level ap-
cies of the two components in signals 1 and 2, only the first peared to be the most disturbing factor, with more effect on
iterative procedure was used to quantify the components. A and T*2 than on d (Fig. 9) .
For signals 3 and 4, the components became large and over-
lapped in the frequency domain. To separate them, the sec- APPLICATION TO REAL BIOMEDICAL MRS DATA
ond iterative procedure was needed. The MRS parameter
values of the two components were estimated for each signal In order to further demonstrate the usefulness of the WT
and given in Table 3. method in biomedical MRS, a selected example is presented.

The correlation coefficients between reference values of In this example, a set of FIDs resulting from a 31P MRS
experiment on perfused working smooth muscle was consid-d, A , and T*2 , and the corresponding WT estimations were

calculated on the 20 simulated resonances: 6 sets of data ered. The set contains six peaks: phosphomonoesters
(PME); inorganic phosphates (Pi) , phosphocreatine, a com-with one resonances (Table 1, Fig. 6) , 3 sets of data with

two overlapping resonances (Table 2, Fig. 7) , and 4 sets of mon reference peak at 0 ppm (PCr), and g, a, and b ATP

FIG. 9. Mean error ( in %) in WT estimated parameters d, A , and T*
2 in relation to signal noise level. (1) Noise-free signal, (2) sn Å 200, (3) sn

Å 300, and (4) sn Å 400.
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FIG. 10. Phase-corrected 31P spectrum of a perfused working rat smooth muscle (202.45 MHz, 14.5 ms pulse, 1200 scans, {5000 Hz spectral width,
and 32K data points) .

(adenosine triphosphate) . The 31P MRS was performed at CONCLUSION
202.45 MHz on an Avance DMX500 Spectrometer (Bruker,

A quantification method based on wavelet-transform anal-Wissenbourg, France). FIDs were acquired with a 14.5 ms
ysis has been proposed. Described by two iterative proce-pulse, 1200 accumulations, a {5000 Hz spectral width, and
dures and a nonlinear regression analysis algorithm, the tech-32 K data points. A 20 Hz line broadening was applied
nique presented is a combination of linear and nonlinearbefore processing data to enhance the SNR. Figure 10 shows
methods. As an alternative method to the Fourier transform,the corresponding spectrum.
the wavelet transform appears efficient in obtaining accurateThe results obtained by WT (Table 4) were compared to
estimates of the values of the MRS parameters d, T*2 , A ,those obtained by a Bruker spectral-fitting method (UXNMR
and w of each signal component.1D, Bruker) and a time-domain method called variable-pro-

The mathematical development shows the role of the ap-jection method (VARPRO) (21, 22) . Only the first 1024
FID points were processed by both WT and VARPRO, parent relaxation time T*2 in estimating the chemical shift.

The first iterative procedure, utilizing the information ob-whereas the spectral-fitting method fitted all the data points
to a Lorentzian model. Unlike the other two methods, WT tained from the phase of the wavelet signal representation,

successfully achieves this operation. Extraction of the com-did not require baseline or phase corrections nor any prior
knowledge before quantification. ponents from the signal depends on component interactions.
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TABLE 4
Comparison of Results Obtained by Spectral Fitting, Variable-Projection Method (VARPRO), and Wavelet Transform

Spectral fitting VARPRO Wavelet transform

d (ppm) T*2 (ms) A (a.u) d (ppm) T*2 (ms) A (a.u) d (ppm) T*2 (ms) A (a.u)

6.816 4.44 430.241 6.817 3.29 496.478 6.816 3.35 497.963
5.083 8.81 1120.204 5.177 8.77 1012.271 5.087 9.07 991.521

00.105 9.29 312.281 0.003 8.60 313.983 00.095 8.83 310.039
02.514 4.55 821.693 02.437 4.28 804.251 02.499 4.21 796.228
07.603 5.00 710.213 07.511 4.60 679.721 07.577 4.63 683.175
016.274 3.80 559.196 016.149 3.43 567.434 016.253 3.45 557.750

Note. Phase values were not estimated. VARPRO software fixed them to a constant value, whereas the spectral-fitting program did not estimate them.

We have shown that the amplitude ratio and the frequency Considering the rectangle (OABC),
difference between the components determine their degree
of interaction. The second iterative procedure proposed ma-
nipulates the frequency content of the WT by using wavelet
properties and reduces the effect of the component interac-
tions. Moreover, by investigating the FID signal in the time-
frequency domain, the major quantification problems in bio-
medical MRS, such as overlapping resonances, are ad-
dressed.

A poor signal-to-noise ratio may hinder this operation,
but since, as shown here, the MRS parameter values of a

y

o C (R)

B(R 2 iD)
A(2iD) ,

x

previously known number of components of the FID signal
can be computed, the proposed classical solution is sufficient let f (z) be a complex function under this rectangle, given
to reduce noise in the data. The quantification procedures by f (z) Å e0z2 /2 , where z Å t 0 iD, and t runs from 0 to
remain valid, and the changes in the apparent relaxation time ` . I1 may be written as
values from application of the low-pass filter are compen-
sated.

I1 Å e0D2/2 *
`0 iD

0iD

e0z2 /2dz . [41]
The practical examples presented show that the method is

suitable for different kinds of FID signals with their specific
The function z r e (0z2 /2) is analytical on and inside theproblems. Results obtained to date demonstrate the estima-

rectangle OABCO. Using the Cauchy theorem, we havetion accuracy of the WT method. Computation time depends
on the complexity of the signal, on the number of compo-
nents, and obviously on the computer power, and may be ©

OABCO

f (z)dz Å *
OA

e0z2 /2dz / *
AB

e0z2 /2dz
reduced if the components do not overlap.

/ *
BC

e0z2 /2dz / *
CO

e0z2 /2dz

APPENDIX 1
Å 0. [42]

(1) On the segment OA of the rectangle, z Å 0iy , whereThis Appendix provides the computation of the integral I
y runs from 0 to D. Using the polar co-ordinates (r √ [0,Å *`

a
e [ (0 t2 /2)/ iDt ] dt , where a Å [(a /T*2 ) 0 (b/a)] . I may √

2D] , u √ [0, p /2]) and the sign of D, f (z) is given by
be written as

*
OA

e0z2 /2dz Å *
D

0

0 ie y2 /2dy

I Å *
`

0

e [ (0 t2 /2)/ iDt ] dt 0 *
a

0

e [ (0 t2 /2)/ iDt ] dt

É |iFp2 (eD2 0 1)G1/2

. [43]
Å I1 0 I2 ∀a. [40]
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(2) On the segment AB , z Å x 0 iD, x √ [0, R] , so that where Uk Å *a

0
t ke0 t2 /2dt . If k Å 0 and the polar co-ordinates

are used:

*
AB

e0z2 /2dz Å *
R0iD

0iD

e0 (x0iD )2 /2dx . [44]

Equation [44] is equal to I1 up to the term e0D2/2 .
U0 Å *

a

0

e0 t2 /2dt É

√
p

2

√
1 0 e0a2

if a ú 0

0
√
p

2

√
1 0 e0a2

if a õ 0

.(3) On the segment BC, z Å R 0 iy and y √ [D, 0] .
Thus,

*
BC

e (0z2 /2)dz Å 0i *
0

D

e0 (R0iy )2/2dy
If k Å 1, by changing variables, we obtain U1 Å *a

0

te0 t2 /2dt Å [1 0 e0a2/2 ] . The general term for this seriesÅ 0ie0R2 /2 *
0

D

e (y2 /2/ iRy )dy . [45]
for k § 2, is given by

Equation [45] may be estimated in the limit by
Uk Å *

a

0

t ke0 t2 /2dt

*
BC

f (z)dz £ 0ie0R2 /2 *
0

D

ey2 /2dy . [46]
Å 0*

a

0

t k01(e0 t2 /2 ) *dt

The integral *0

D
ey2 /2dy has a finite value; hence, Eq. [46]

Å 0a k01e0a2/2 / (k 0 1) *
a

0

t k02e0 t2 /2dt
decrease to zero when R r ` .

(4) On segment CO , z Å x , with x √ [R , 0] . Using the Å 0a k01e0a2/2 / (k 0 1)Uk02 . [50]
polar co-ordinates (r √ [0,

√
2D] , u √ [0, p /2]) , we obtain

The series (`
kÅ0 [( iD) k /k!]Uk is recurrent and convergent.*

CO

e0z2 /2dz Å 0 *
R

0

e0x2 /2dx By combining Eqs. [40], [48], and [49], I is approximated
as

É 0F
√
p

2
(1 0 e0R2

)G1/2

. [47]

I É F
√
p

2
e0D2/2 (1 { i

√
eD2 0 1)G

Equation [47] approaches 0
√
p /2 when R r ` .

Substituting the values of Eqs. [43], [44], [46], and [47]
0 ∑

`

kÅ0

( iD) k

k!
Uk ∀a. [51]into Eq. [42], we obtain

Equation [51] may be described by I Å [B / iC] , where B
is

I1 É

√
p

2
e0D2/2 [1 / i

√
eD2 0 1] if D ú 0√

p

2
e0D2/2 [1 0 i

√
eD2 0 1] if D õ 0

. [48]

B Å
√
p

2
e0D2/2 |

√
p

2

√
1 0 e0a2

For I2 Å *a

0
e0 t2 /2e iDtdt , we use the Taylor series expansion

0 ∑
`

kÅ2

( iD) k

k!
Uk (k pair) [52]of the term e iDt .

I2 Å *
a

0
F∑

`

kÅ0

( iDt) k

k! Ge0 t2 /2dt and

Å ∑
`

kÅ0

( iD) k

k! *
a

0

t ke0 t2 /2dt C Å {
√
p

2
e0D2/2 (

√
eD2 0 1) 0 D(1 0 e0a2/2 )

0 ∑
`

kÅ2

( iD) k

k!
Uk (k odd). [53]Å ∑

`

kÅ0

( iD) k

k!
Uk , [49]
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The signs | and { are determined by the signs of a and D larger. For values of b larger than br , the factor e (0a2/2) is
respectively. Note that the term C is zero if D Å 0. If we negligible, so that the function in Eq. [55] is zero.
restrict k to unity, B , and C become
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